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Optical absorption in small metal particles 

Mustansir Barma and V Subrahmanyam 
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005,  India 
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Abstract. The optical absorption of small metal particles is investigated using the hard- 
walled sphere model of non-interacting electrons in an infinitely deep spherical potential 
well. An analytical formula is obtained for the frequency-dependent dielectric function, 
valid if the particle radius greatly exceeds the inter-electron spacing. The exact result lies 
between the earlier approximations of Kawabata and Kubo and of Hache et al for the 
same model. As the radius gets smaller, the absorption shows pronounced oscillations, 
attributable to shell effects, as a function of frequency. 

1. Introduction 

The linear and non-linear optical properties of very small metal particles are of current 
theoretical and experimental interest. There are strong quantum size effects (Perenboom 
et a1 1981, Kubo et a1 1984, Halperin 1986) when the dimensions of the particles are 
made smaller than the mean free path of electrons in the bulk material. These effects 
show up, for instance, in the size-dependent broadening of the Mie resonance (Kreibig 
1974, Kreibig and Genzel 1985) when the particle size is decreased in the range from 
about 100 to 10 A; the resonance width is found to be inversely proportional to the 
size. 

The first quantum mechanical calculation of the width was performed by Kawabata 
and Kubo (1966). They modelled the metal particle as a system of non-interacting 
electrons confined inside a hard-walled sphere, i.e. an infinitely deep spherical potential 
well. The neglect of interactions is a good approximation as long as the particle size 
is much smaller than the mean free path in the bulk system. The Mie resonance was 
associated with the excitation of a surface plasma mode; the width results from the 
decay of this mode into single-particle states. The hard-walled sphere is an idealised 
model insofar as it ignores band-structure effects, electron-electron interactions and 
realistic surface potentials. Nevertheless, it is important as the simplest model which 
captures much of the physics, and has been used recently by Hache et a1 (1986) to 
estimate non-linear optical susceptibilities of small particles. 

However, previous calculations of optical properties using the hard-walled sphere 
model seem to be in error. The purpose of this paper is to present the correct result for 
the optical absorption in the model. We derive a closed-form expression valid in the 
large-size limit, i.e. size far in excess of inter-electron spacing. We also study numerically 
the deviations from the analytical result when the size is reduced somewhat, and find 
that the absorption shows oscillatory fluctuations around a smooth background. These 
oscillations are attributed to shell effects, and we comment briefly on their possible 
observability in experiment. 
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2. The dielectric function 

Consider a composite medium consisting of identical, small spherical particles with 
dielectric constant E - is, well dispersed in a surrounding medium with dielectric 
constant E ~ .  If the volume fraction of particles is a, the absorption coefficient is given 
by Mie’s formula (Mie 1908) 

provided that the wavelength of light A % diameter of each particle. The Mie resonance 
occurs at that frequency w = wR at which 2c0 = 0. The lineshape is approximately 
a Lorentzian centred at wR, except for very small particles. The linewidth, which shows 
a systematic dependence on the radius of the particle, is discussed at the end of $2.2. 

2.1. Linear response theory 

The dielectric constant of the metal particle can be calculated using linear response 
theory. Since the electrons (each of charge e and mass m) are assumed to be non- 
interacting, can be expressed in terms of the one-electron energies E ,  and eigenfunc- 
tions ii) (Kawabata and Kubo 1966). 

Here V is the volume of the particle, ji is the rate of change of the current operator 
and f ( E i )  is the occupation number of state i, given at temperature T and chemical 
potential y by 

In a hard-walled sphere of radius a, each eigenfunction is a product of a spherical 
harmonic Y,, (a) and the radial eigenfunction 

Here j, is the spherical Bessel function of order 1 and (akn i )  is the location of its nth 
zero. The corresponding one-electron energy is 

The matrix element which appears in (2) can be evaluated to yield 

with 
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At T = 0, the Fermi function (equation (3)) is replaced by the step function 
O(p - Ei). On noting that C M ( C y ) 2  = 1/3 and that there are two spin states for each 
electron, we obtain 

16ne2 
m a w  

&*(U) = ___ 2 5 4 S(w) (7) 

with 

2.2. The limit k,a + cc 

In the limit k,a -+ cc where k, E (2pm/h2)'/' is the Fermi wavevector, the sums over 
(nl , l l)  and (n2,1,) in (8) for S(w) may be replaced by integrals, to yield 

Several authors have obtained (9) or its equivalent, but have not evaluated the integral 
correctly (Kawabata and Kubo 1966, Ruppin and Yatom 1976, Tran Thoai and Ekardt 
1982, Hache et a1 1986) in the asymptotic limit k,a -+ CO. We use the Debye expansion 
for large-order Bessel functions (Abramowitz and Stegun 1965). Then ka, the nth zero 
of the lth-order Bessel function, is given by 

where 4 runs from 0 to n/2. The parametrisation is designed for large values of 1, but 
works remarkably well even for low values; for instance, for 1 = n = 1, the error made 
is less than 1 per cent. An example of the usefulness of (loa, b) in the large-ka limit is 
the fact that it yields the correct bulk density of states (Lambert 1968). 

s (w)  can be evaluated in closed form using (loa, b). Here we present the principal 
steps. Noting that the Jacobian of the transformation of (10) is (ka2/n) sin2 4, we can 
rewrite 3 as 

where A(k,, k2) is the 'angular' integral 
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Noting that k ,  I k ,  (as guaranteed by the 8 functions in (11)) the integral over 41 can 
be performed. Then A ( k , ,  k,) involves an integral over the single variable y = sin 41. 

with 

W ( z ) =  - l+z2- -  (1 - z2), log ( __ 1 + z ) ]  
2 ’ [  22 1 - z  

On substituting equations (13) into ( l l ) ,  the integral over E ,  can be performed, with 
the result 

(14) 
P 

16n2 
s(o) = ~ ( k , ~ ) ~  G(v) 

where v 3 h o l y  and 

G(v) = J dx x”,(x + V)~’,  W ( [x/(x + v ) ] ” ~ )  
1- i .  

This integral can be performed with the result 

where 

The result for &,(CO) is finally (as k,a --f x) 

4 e2 1 
n Aoa v 

E ~ ( w )  = - __ 7 G(v). 

Our result for G(v) is different from the results GKK(v) and G,,,(v) of Kawabata 
and Kubo (1966) (KK) and Hache et al (1986) (HRF) respectively. KK took the location 
of the nth zero of the Ith-order spherical Bessel function to be at (I + 2n)n/2. While 
this is correct if n 9 1, a sizable fraction of all states with a given energy have n I 1 and 
so the KK approximation is not valid. The result of the KK approximation is correctly 
quoted by Ruppin and Yatom (1976); GKK(v) is 8v/rc2 times the function g,(v) in their 
equation (35). 

As pointed out by HRF, the KK approximation for Bessel function zeros leads to 
the incorrect bulk density of states. HRF inserted the correct density of states at one 
point in their calculation, but their replacement of integrations over (nl, 11), (n2, 12) by 
integrations over E, ,  E ,  remains approximate. Their result is GHRF(v) = (n2/6)GKK(v). 
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Figure 1. The function G(v) (related to € 2  through (17)) displayed for the hard-walled 
sphere model. The results of the Kawabata-Kubo (1966) (KK) approximation (as quoted 
by Ruppin and Yatom 1976) and the approximation of Hache et al (1986) (HRF) are also 
shown for comparison. 

Figure 1 displays our result for G ( v )  (equation (16)), and also for comparison 
G K K ( v )  and GHRF(v) .  The KK approximation underestimates ~ ~ ( 0 )  for all o whereas 
the H R F  approximation gives an overestimate. 

In the limit of large radii, the real part q(o) of the dielectric function is approxi- 
mately 

Here up E ( 4 7 ~ n e ~ / m ) ' / ~  is the plasma frequency and n is the electron density given 
by k;/3n2. The absorption as a function of frequency is given by equations ( l ) ,  (17) 
and (18). The full width at half the maximum of the Mie resonance is given by 
2 ~ ~ / / d ~ ~ / d o /  evaluated at oR. The result is 

where vF is the Fermi velocity and vR E hoR/p. In the limit v + 0, we see from (16) 
that the ratio G ( v ) / v  approaches unity; the ratio is less than unity for non-zero values 
of v .  

2.3. kFa large but $finite: shell efects 

In the limit kFa -+ a, the sum S(o) may be replaced by the integral $(a). It is also 
interesting to study the behaviour of S(w)  when k,a is large but finite, taking on values 
in the experimentally accessible range. To this end, we have performed the sum over 
states in (8) numerically, using the fact that E,, are determined by the zeros of Ressel 
functions. Since the result is a sum of delta function peaks in frequency, comparison 
with the smooth limiting function is most conveniently done by plotting the integrals 
of the functions. Consequently, we define 

E?(v) L" dv' G(v')  
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Figure 2. The integral H ( v )  as a function of v .  The analytical result (valid for k F a  + CO) is 
shown, along with the results of explicitly performing the sum in (8) for kFa  = 15 and 60. 

and 

W I h  
( k , ~ ) - ~  1 dw S(w).  

16n2h 
H(v) = ~ 

P2 

We expect that H ( v )  should approach R(v) as k,a -+ a. 
Figure 2 shows plots of H(v) and of H ( v )  for k,a = 15 and k,a = 60. On the 

scale of the figure, the curve for k,a = 60 is quite smooth and close to the limiting 
form R(V),  incidentally providing a check on our formula for G(v) (equation (16)). 
In contrast, the curve for k,a = 15 has the character of a staircase, with fluctuations 
on two distinct energy scales. On the smaller scale there are jumps corresponding 
to individual transitions; but also apparent in the figure are excursions of the entire 
curve on either side of a smooth background. Very similar oscillatory features are 
present in the integrated density of states of finite spheres (Balian and Bloch 1972, 
Subrahmanyam and Barma 1989), where the large-scale fluctuations are recognised to 
be a consequence of correlations between the single-particle states, as in shell effects 
in nuclear physics (Bohr and Mottelson 1975). The fluctuations in figure 2 appear to 
be the optical absorption manifestation of these effects. As in the case of the density 
of states, both the amplitude and period of the optical absorption fluctuations depend 
strongly on the size; for larger sizes the fluctuations are more rapid and of smaller 
amplitude, and quickly become insignificant as shown by the smooth curve obtained 
for k,a = 60. 

3. Conclusion 

The principal point of this paper was to present the correct result for &*(U) and the 
plasma resonance linewidth for the hard-walled sphere model in the asymptotic limit 
k,a -+ x. As we have seen, the resonance width is inversely proportional to the radius, 
with a slope which is larger than in the KK approximation but smaller than in the HRF 
approximation. 
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There has been some discussion in the literature about the KK result being too 
small by a factor of about 2 compared with the experimentally determined for small 
silver particles in a glass matrix (Kreibig 1974). There is a smaller discrepancy between 
the experiment and the correct result (which is approximately 50% larger than the 
KK result for v = 0.6 appropriate for Ag). Given the simplicity of the model, perhaps 
one should not expect more detailed agreement, especially in view of the fact that 
the measured width is found to depend strongly on the matrix surrounding the metal 
particles (Kreibig and Genzel 1985). 

Most experiments have been done on particles whose radius is in the range 10 
to 100 A. However, recently there have been some studies of much smaller particles. 
de Heer et a1 (1987) and Selby et a1 (1989) have studied the Mie resonance in free 
Na clusters with fewer than 70 atoms. Selby et a1 conclude that the inverse radius 
dependence of the width breaks down for such small clusters. However, Charle et a1 
(1989) find that width - (radius)-' continues to hold for Ag particles in an argon 
matrix down to radii N 5 A. But for particles as small as the ones in these experiments, 
the lineshape deviates significantly from a simple Lorentzian and deserves careful 
investigation. 

Selby et a1 (1989) observe that the plasma resonance in Na clusters is characterised 
by a single peak for clusters with filled electronic shells, and by a split peak for 
incompletely filled shells. This shell effect is plausibly attributed to deviations from 
sphericity away from shell fillings. From the present model we may infer that there is 
also another source of structure in the lineshape, even for purely spherical particles, 
if they are small enough. As we see from figure 2, E ( W )  exhibits noticeable oscillatory 
fluctuations around a smooth background as a function of w .  Correspondingly, the 
lineshape would be expected to develop an oscillatory structure as well. Interestingly, 
Charle et a1 (1989) have observed the emergence of a structure in the lineshape when 
the radius of Ag particles in argon falls below 10 A. Also, Genzel et a1 (1975) had 
earlier observed a structure in the lineshape for Ag particles embedded in glass, in a 
similar range of radii. It would be interesting to investigate the full lineshape for such 
small particles within the present model. 
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